很多小伙伴想了解等比数列求和的相关知识,今天小编专门整理了等比数列求和的内容介绍,让我们一起看看吧。
本文目录一览:
1、等比数列求和的七种方法2、等比数列怎么求和?等比数列求和的七种方法
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。
(资料图片)
数列求和的七种方法
1、数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。
2、倒序相加法。倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。
3、分组求和法。分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
4、错位相减法。错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。
5、裂项相消法。裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
6、乘公比错项相减(等差×等比)。这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
7、公式法。对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
等比数列怎么求和?
1、等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列。
举例:
数列:2、4、8、16、······
每一项与前一项的比值:4÷2=8÷4=16÷8=2,所以这个数列是等比数列,而它的公比就是2。
2、等比数列的求和公示如下:
其中a1为首项,q为等比数列公比,Sn为等比数列前n项和。
还是以数列:2、4、8、16、······为例,a1=2,公比q=2,
假如是求前四项的和,即:Sn=2×(1-2^4)÷(1-2)=30,与2+4+8+16=30 相符。
扩展资料
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金×(1+利率)^存期
以上就是小编对等比数列求和的相关信息分享,希望能对大家有所帮助。